
0

Table Of Contents

1 Executive Summary

2 Audit Methodology

3 Project Overview

3.1 Project Introduction

3.2 Vulnerability Information

4 Code Overview

4.1 Contracts Description

4.2 Visibility Description

4.3 Vulnerability Summary

5 Audit Result

6 Statement

1

1 Executive Summary

On 2022.04.28, the SlowMist security team received the Bhavish team's security audit application for Bhavish

finance, developed the audit plan according to the agreement of both parties and the characteristics of the project,

and finally issued the security audit report.

The SlowMist security team adopts the strategy of "white box lead, black, grey box assists" to conduct a complete

security test on the project in the way closest to the real attack.

The test method information:

Test method Description

Black box
testing

Conduct security tests from an attacker's perspective externally.

Grey box testing
Conduct security testing on code modules through the scripting tool, observing the
internal running status, mining weaknesses.

White box
testing

Based on the open source code, non-open source code, to detect whether there are
vulnerabilities in programs such as nodes, SDK, etc.

The vulnerability severity level information:

Level Description

Critical
Critical severity vulnerabilities will have a significant impact on the security of the DeFi
project, and it is strongly recommended to fix the critical vulnerabilities.

High
High severity vulnerabilities will affect the normal operation of the DeFi project. It is
strongly recommended to fix high-risk vulnerabilities.

Medium
Medium severity vulnerability will affect the operation of the DeFi project. It is
recommended to fix medium-risk vulnerabilities.

Low
Low severity vulnerabilities may affect the operation of the DeFi project in certain
scenarios. It is suggested that the project team should evaluate and consider whether
these vulnerabilities need to be fixed.

Weakness There are safety risks theoretically, but it is extremely difficult to reproduce in engineering.

2

Level Description

Suggestion There are better practices for coding or architecture.

2 Audit Methodology

The security audit process of SlowMist security team for smart contract includes two steps:

Smart contract codes are scanned/tested for commonly known and more specific vulnerabilities using automated

analysis tools.

Manual audit of the codes for security issues. The contracts are manually analyzed to look for any potential

problems.

Following is the list of commonly known vulnerabilities that was considered during the audit of the smart contract:

Serial Number Audit Class Audit Subclass

1 Overflow Audit -

2 Reentrancy Attack Audit -

3 Replay Attack Audit -

4 Flashloan Attack Audit -

5 Race Conditions Audit Reordering Attack Audit

6 Permission Vulnerability Audit
Access Control Audit

Excessive Authority Audit

3

Serial Number Audit Class Audit SubclassSerial Number Audit Class Audit Subclass

7 Security Design Audit

External Module Safe Use Audit

Compiler Version Security Audit

Hard-coded Address Security Audit

Fallback Function Safe Use Audit

Show Coding Security Audit

Function Return Value Security Audit

External Call Function Security Audit

Block data Dependence Security Audit

tx.origin Authentication Security Audit

8 Denial of Service Audit -

9 Gas Optimization Audit -

10 Design Logic Audit -

11 Variable Coverage Vulnerability Audit -

12 "False Top-up" Vulnerability Audit -

13 Scoping and Declarations Audit -

14 Malicious Event Log Audit -

15 Arithmetic Accuracy Deviation Audit -

16 Uninitialized Storage Pointer Audit -

3 Project Overview

4

3.1 Project Introduction

Audit Version:

https://github.com/Bhavish-finance/prediction-contract

commit: 833c8305b21961eee2cb2effa7db351178bf29ea

The following contract files are not within the scope of this audit:

3.2 Vulnerability Information

The following is the status of the vulnerabilities found in this audit:

NO Title Category Level Status

N1
Business logic is not

clear
Others Low Confirmed

N2
NotContract can be

bypassed
Others Low Fixed

N3
Enhanced event

logging
Others Suggestion Confirmed

N4
admin address

management security
reminder

Others Suggestion Fixed

N5
Excessive authority

issues
Authority Control

Vulnerability
Low Confirmed

N6
roundTime cannot be

too short
Design Logic

Audit
Low Confirmed

prediction-contract/contracts/Integrations/MinimalForwarder/MinimalForwarder.sol

prediction-contract/contracts/Integrations/Swap/BhavishSwap.sol

prediction-contract/contracts/Libs/DateTimeLibrary.sol

prediction-contract/contracts/Impl/BhavishSDK.sol

5

NO Title Category Level Status

N7N7
zero round security

reminder
Design Logic

Audit
Suggestion Confirmed

4 Code Overview

4.1 Contracts Description

The main network address of the contract is as follows:

The code was not deployed to the mainnet.

4.2 Visibility Description

The SlowMist Security team analyzed the visibility of major contracts during the audit, the result as follows:

ChainlinkPredicitionOps

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

checkUpkeep External - -

performUpkeep External Can Modify State -

GelatoPredictionOps

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

checker External - -

6

PredictionOpsManagerPredictionOpsManager

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

setPredicitionMarket Public Can Modify State onlyOwner

execute Public Can Modify State -

canPerformTask External - -

BhavishAdministrator

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

<Receive Ether> External Payable -

setAdmin External Can Modify State onlyAdmin

claimTreasury External Can Modify State nonReentrant onlyAdmin notContract

BhavishPrediction

Function Name Visibility Mutability Modifiers

<Constructor> Public
Can Modify

State
-

setOperator External
Can Modify

State
onlyAdmin

setBhavishAdministrat
or

External
Can Modify

State
onlyAdmin

removeOperator External
Can Modify

State
onlyAdmin

setBhavishSwap External
Can Modify

State
onlyAdmin

7

BhavishPrediction

<Receive Ether> External Payable -

pause External
Can Modify

State
whenNotPaused onlyAdmin

unPause External
Can Modify

State
whenPaused onlyAdmin

setMinPredictAmount External
Can Modify

State
whenPaused onlyAdmin

setTreasuryFee External
Can Modify

State
whenPaused onlyAdmin

setRoundTime External
Can Modify

State
whenPaused onlyOperator

_createRound Private
Can Modify

State
-

_startRound Private
Can Modify

State
-

_cancelRound Private
Can Modify

State
-

_endRound Private
Can Modify

State
-

_calculateRewards Private
Can Modify

State
-

_safeTransfer Private
Can Modify

State
-

_refundable Private - -

transferToAdmin External Payable nonReentrant onlyAdmin

predictUp External Payable whenNotPaused nonReentrant

predictDown External Payable whenNotPaused nonReentrant

createPredictionMarket External
Can Modify

State
whenNotPaused onlyOperator

notContract

8

BhavishPrediction

startPredictionMarket External
Can Modify

State
whenNotPaused onlyOperator

notContract

_claimable Public - -

claim External
Can Modify

State
nonReentrant

getRewards Public - -

_calcRewardsForUser Private - -

refundUsers Public
Can Modify

State
nonReentrant

executeRound External
Can Modify

State
whenNotPaused

getCurrentRoundDetail
s

External - -

BhavishPredictionStorage

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

setManager External Can Modify State -

createPredictionRound External Can Modify State onlyManager

updatePredictionRound External Can Modify State onlyManager

getUsersInRounds External - -

getPredictionRound External - -

getArrayRounds External - -

setRoundState External Can Modify State onlyManager

9

BhavishPredictionStorage

cancelRound External Can Modify State onlyManager

setRewardAmountForRound External Can Modify State onlyManager

setAmount External Can Modify State onlyManager

createBet External Can Modify State onlyManager

getBetInfo External - -

setBetAmountDispersed External Can Modify State onlyManager

setBetInfo External Can Modify State onlyManager

setLedgerInfo External Can Modify State onlyManager

getUserRoundHistory External - -

PriceManager

Function Name Visibility Mutability Modifiers

setManager Public Can Modify State -

removeManager Public Can Modify State -

<Constructor> Public Can Modify State -

setRoundIdChecks External Can Modify State onlyAdmin

setRoundIdTimestampDifference External Can Modify State onlyAdmin

getPrice Public - -

setPairContract Public Can Modify State onlyManager

getLatestRoundId Internal - -

10

PriceManager

getPriceByTimestamp External - -

getTimestampByRoundId External - -

BaseRelayRecipient

Function Name Visibility Mutability Modifiers

isTrustedForwarder Public - -

msgSender Internal - -

4.3 Vulnerability Summary

[N1] [Low] Business logic is not clear

Category: Others

Content

The execute() function does not accept parameters, but abi.encodeWithSignature("execute()",

predictionOpsManager) inputs predictionOpsManager, the business logic here is not clear.

 function checker() external view override returns (bool canExec, bytes memory

execPayload) {

 // solhint-disable not-rely-on-time

 canExec = predictionOpsManager.canPerformTask();

 execPayload = abi.encodeWithSignature("execute()", predictionOpsManager);

 }

When executing the for loop, it should be ensured that the canPerform returned by each round is true, but the for

loop will be terminated once one of them returns true. So it should be if (!canPerform) break?

contracts/Automation/GelatoPredictionOps.sol#L18

11

function canPerformTask() external view returns (bool canPerform) {

 for (uint256 i = 0; i < predictionMarkets.length; i++) {

 IBhavishPrediction.Round memory round =

predictionMarkets[i].getCurrentRoundDetails();

 canPerform =

 block.timestamp > round.roundEndTimestamp &&

 round.roundState != IBhavishPrediction.RoundState.ENDED;

 if (canPerform) break;

 }

 }

Solution

It is recommended to communicate with the developers the business logic implemented by the code here.

Status

Confirmed; The project team response: the canPerform flag is used to understand if atleast one of the prediction

market is ready for creating the rounds.

If the condition is true, then execute() method of the same contract will be invoked wherein the executeRound() of the

prediction market is invoked based on the same conditions.

The SlowMist security team response: After communication with project team, there is no security risk in this issue.

[N2] [Low] NotContract can be bypassed

Category: Others

Content

NotContract uses Address.sol:isContract for judgment, which can be bypassed. When the contracts in construction

the code.length is 0.

contracts/Automation/PredictionOpsManager.sol#L40-L50

contracts/Impl/BhavishAdministrator.sol#L29-L32

12

 modifier notContract(address _address) {

 require(!address(_address).isContract(), "Contract not allowed");

 _;

 }

 function isContract(address account) internal view returns (bool) {

 // This method relies on extcodesize/address.code.length, which returns 0

 // for contracts in construction, since the code is only stored at the end

 // of the constructor execution.

 return account.code.length > 0;

 }

Solution

It is recommended to use tx.origin == msg.sender to determine the EOA address.

Status

Fixed; The project team fixed this issue by removing notContract modifier.

[N3] [Suggestion] Enhanced event logging

Category: Others

Content

When recording events, only new values ​​are recorded, which is not conducive to the review of community users.

 function setMinPredictAmount(uint256 _minPredictAmount) external whenPaused

onlyAdmin(msg.sender) {

 require(_minPredictAmount > 0, "Must be superior to 0");

 minPredictAmount = _minPredictAmount;

 emit NewMinPredictAmount(_minPredictAmount);

 }

node_modules/@openzeppelin/contracts/utils/Address.sol#L39-L42

contracts/Impl/BhavishPrediction.sol#L195-L212

13

 function setTreasuryFee(uint256 _treasuryFee) external whenPaused

onlyAdmin(msg.sender) {

 require(_treasuryFee > 0 && _treasuryFee < MAX_TREASURY_FEE, "Treasury fee is

too high");

 treasuryFee = _treasuryFee;

 emit NewTreasuryFee(_treasuryFee);

 }

 function setAdmin(address _admin) external onlyAdmin(msg.sender) {

 require(_admin != address(0), "Cannot be zero address");

 grantRole(DEFAULT_ADMIN_ROLE, _admin);

 emit NewAdmin(_admin);

 }

 function setOperator(address _operator) external onlyAdmin(msg.sender) {

 require(!address(_operator).isContract(), "Operator cannot be a contract");

 require(_operator != address(0), "Cannot be zero address");

 grantRole(OPERATOR_ROLE, _operator);

 emit NewOperator(_operator);

 }

Solution

It is recommended to record old and new values ​​to facilitate review by community users.

Status

Confirmed; The project team response: We index old data in subgraph, so no need to emit events for old values.

[N4] [Suggestion] admin address management security reminder

contracts/Impl/BhavishAdministrator.sol#L44-L49

contracts/Impl/BhavishPrediction.sol#L120-L126

14

Category: Others

Content

The admin will manage treasuryFee. There is a risk of centralized authority management.

 function claimTreasury(uint256 _amount)

 external

 override

 nonReentrant

 onlyAdmin(msg.sender)

 notContract(msg.sender)

 {

 require(_amount <= address(this).balance, "Cannot claim > contract balance");

 (bool success,) = admin.call{ value: _amount }("");

 require(success, "TransferHelper: TRANSFER_FAILED");

 emit TreasuryClaim(admin, _amount);

 }

After the admin is assigned, it cannot be modified. If the private key of the admin is lost or leaked, it will lead to loss

of fee income.

 function setAdmin(address _admin) external onlyAdmin(msg.sender) {

 require(_admin != address(0), "Cannot be zero address");

 grantRole(DEFAULT_ADMIN_ROLE, _admin);

 emit NewAdmin(_admin);

 }

constructor() {

 admin = payable(msg.sender);

contracts/Impl/BhavishAdministrator.sol#L58-L68

contracts/Impl/BhavishAdministrator.sol#L44-L49

contracts/Impl/BhavishAdministrator.sol#L20

15

 _setupRole(DEFAULT_ADMIN_ROLE, msg.sender);

 }

Solution

It is recommended to set admin to multi-sign contracts to avoid the loss of funds caused by the loss of private keys.

Status

Fixed; The project team response: Initially most of the admin operations will be managed by Bhavish and then we

slowly move to governance. So, the risk is very less.

[N5] [Low] Excessive authority issues

Category: Authority Control Vulnerability

Content

Admin can setPairContract, if the wrong contract address is set, it will affect the price obtained. Wrong price affects

user profitability.

 function setPairContract(

 bytes32 _underlying,

 bytes32 _strike,

 address _aggregator

) public override onlyManager(msg.sender) {

 require(_aggregator.isContract(), "Chainlink: Invalid aggregator");

 addressMap[_underlying][_strike] = _aggregator;

 emit AddAssetPairAggregator(_underlying, _strike, address(this),

_aggregator);

 }

Missing event records, and Admin can change the parameters of the contract.

contracts/Impl/PriceManager.sol#L76-L85

contracts/Impl/PriceManager.sol#L46-L53

16

 function setRoundIdChecks(uint8 _limitChecks) external onlyAdmin(msg.sender) {

 require(_limitChecks >= 0 && _limitChecks <= 10, "invalid limit range");

 roundIdChecks = _limitChecks;

 }

 function setRoundIdTimestampDifference(uint256 _difference) external

onlyAdmin(msg.sender) {

 roundIdTimestampDifference = _difference;

 }

Solution

It is recommended to set Admin to a timelock contract or a multi-signature contract. And add event logging for

setRoundIdTimestampDifference and setRoundIdChecks.

Status

Confirmed; The project team response: We have taken out the redundant methods. Also, the setter is used for

'numItr' state variable which is being handled by admin initially and slowly we will be moving to governance.

[N6] [Low] roundTime cannot be too short

Category: Design Logic Audit

Content

roundTime cannot be too short, and cannot be less than the price update time of chainlink.

 function setRoundTime(uint256 _roundTime) external whenPaused

onlyOperator(msg.sender) {

 require(0 <= _roundTime && _roundTime <= 3600, "Round Time should be between

1 sec to 3600 sec");

 roundTime = _roundTime;

 }

Solution

It is recommended to refer to the price update time of chainlink for configuration.

contracts/Impl/BhavishPrediction.sol#L219-L222

17

Reference:

https://docs.chain.link/docs/ethereum-addresses/

https://docs.chain.link/docs/historical-price-data/#:~:text=getRoundData

Status

Confirmed; The project team response: Price interval update is based on deviation and heartbeat, Since we can't get

those details on chain.

[N7] [Suggestion] zero round security reminder

Category: Design Logic Audit

Content

The startPredictionMarket function should be called in time during the zero round, otherwise the round time will be

shortened and the price may be predicted.

 function startPredictionMarket() external override whenNotPaused

onlyOperator(msg.sender) {

 require(marketStatus.createPredictionMarketOnce, "Can only run after

roundzeroCreateRound is triggered");

 require(!marketStatus.startPredictionMarketOnce, "Can only run

roundzeroStartRound once");

 require(block.timestamp >= roundzeroStartTimestamp, "Round cannot be started

early");

 (uint256 price,) = bhavishPriceManager.getPrice(

 assetPair.underlying,

 assetPair.strike,

 roundzeroStartTimestamp

);

 _startRound(currentRoundId, price);

contracts/Impl/BhavishPrediction.sol#L459-L470

18

 marketStatus.startPredictionMarketOnce = true;

 }

Solution

It is recommended to call the startPredictionMarket function in time in the zero round.

Status

Confirmed; The project team response: We are calling the round zero at the specified time only and also, there will be

no prediction in the initial rounds.

5 Audit Result

Audit Number Audit Team Audit Date Audit Result

0X002205100003 SlowMist Security Team 2022.04.28 - 2022.05.10 Low Risk

Summary conclusion: The SlowMist security team uses a manual and SlowMist team's analysis tool to audit the

project, during the audit work we found 4 low risk, 3 suggestion vulnerabilities. The code was not deployed to the

mainnet.

19

6 Statement

SlowMist issues this report with reference to the facts that have occurred or existed before the issuance of this

report, and only assumes corresponding responsibility based on these.

For the facts that occurred or existed after the issuance, SlowMist is not able to judge the security status of this

project, and is not responsible for them. The security audit analysis and other contents of this report are based on

the documents and materials provided to SlowMist by the information provider till the date of the insurance report

(referred to as "provided information"). SlowMist assumes: The information provided is not missing, tampered with,

deleted or concealed. If the information provided is missing, tampered with, deleted, concealed, or inconsistent with

the actual situation, the SlowMist shall not be liable for any loss or adverse effect resulting therefrom. SlowMist only

conducts the agreed security audit on the security situation of the project and issues this report. SlowMist is not

responsible for the background and other conditions of the project.

20

